Inferring natural selection on fine-scale chromatin organization in yeast.
نویسندگان
چکیده
Despite its potential role in the evolution of complex phenotypes, the detection of negative (purifying) and positive selection on noncoding regulatory sequence has been elusive because of the inherent difficulty in predicting the functional consequences of mutations on noncoding sequence. Because the functioning of regulatory sequence depends upon both chromatin configuration and cis-regulatory factor binding, we investigate the idea that the functional conservation of regulatory regions should be associated with the conservation of sequence-dependent bending properties of DNA that determine its affinity for the nucleosome. Recent advances in the computational prediction of sequence-dependent affinity to nucleosomes provide an opportunity to distinguish between neutral and nonneutral evolution of fine-scale chromatin organization. Here, a statistical test is presented for detecting evolutionary conservation and/or adaptive evolution of nucleosome affinity from interspecies comparisons of DNA sequences. Local nucleosome affinities of homologous sequences were calculated using 2 recently published methods. A randomization test was applied to sites of mutation to evaluate the similarity of DNA-nucleosome affinity between several closely related species of Saccharomyces yeast. For most of the genes we analyzed, the conservation of local nucleosome affinity was detected at a few distinct locations in the upstream noncoding region. Our results also demonstrate that different patterns of chromatin evolution have shaped DNA-nucleosome interaction at the core promoters of TATA-containing and TATA-less genes and that elevated purifying selection has maintained low affinity for nucleosome in the core promoters of the latter group. Across the entire yeast genome, DNA-nucleosome interaction was also discovered to be significantly more conserved in TATA-less genes compared with TATA-containing genes.
منابع مشابه
In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition
We report a new method for in situ localization of DNA sequences that allows excellent preservation of nuclear and chromosomal ultrastructure and direct, in vivo observations. 256 direct repeats of the lac operator were added to vector constructs used for transfection and served as a tag for labeling by lac repressor. This system was first characterized by visualization of chromosome homogeneou...
متن کاملPrinciples of chromatin organization in yeast: relevance of polymer models to describe nuclear organization and dynamics.
Nuclear organization can impact on all aspects of the genome life cycle. This organization is thoroughly investigated by advanced imaging and chromosome conformation capture techniques, providing considerable amount of datasets describing the spatial organization of chromosomes. In this review, we will focus on polymer models to describe chromosome statics and dynamics in the yeast Saccharomyce...
متن کاملA polymer model for large-scale chromatin organization in lower eukaryotes.
A quantitative model of large-scale chromatin organization was applied to nuclei of fission yeast Schizosaccharomyces pombe (meiotic prophase and G2 phase), budding yeast Saccharomyces cerevisiae (young and senescent cells), Drosophila (embryonic cycles 10 and 14, and polytene tissues) and Caenorhabditis elegans (G1 phase). The model is based on the coil-like behavior of chromosomal fibers and ...
متن کاملHeterochromatin organization of a natural yeast telomere. Recruitment of Sir3p through interaction with histone H4 N terminus is required for the establishment of repressive structures.
The chromatin organization of eukaryotic telomeres is essential for telomeric function and is currently receiving great attention. In yeast, the structural organization of telomeres involves a complex interplay of telomeric proteins that results in the formation of heterochromatin. This telomeric heterochromatin involves homotypic and heterotypic protein interactions that have been summarized i...
متن کاملNuclear Architecture and Epigenetics of Lineage Choice
Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 25 8 شماره
صفحات -
تاریخ انتشار 2008